Abstract
A sequence of random variables η 0, η 1, …, ηn , … is defined by the recurrence formula ηn = max (η n–1 + ξn , 0) where η 0 is a discrete random variable taking on non-negative integers only and ξ 1, ξ 2, … ξn , … is a semi-Markov sequence of discrete random variables taking on integers only. Define Δ as the smallest n = 1, 2, … for which ηn = 0. The random variable ηn can be interpreted as the content of a dam at time t = n(n = 0, 1, 2, …) and Δ as the time of first emptiness. This paper deals with the determination of the distributions of ηn and Δ by using the method of matrix factorisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.