Abstract

To obtain consistency and asymptotic normality, a generalized method of moments (GMM) estimator typically is defined to be an approximate global minimizer of a GMM criterion function. To compute such an estimator, however, can be problematic because of the difficulty of global optimization. In consequence, practitioners usually ignore the problem and take the GMM estimator to be the result of a local optimization algorithm. This yields an estimator that is not necessarily consistent and asymptotically normal. The use of a local optimization algorithm also can run into the problem of instability due to flats or ridges in the criterion function, which makes it difficult to know when to stop the algorithm. To alleviate these problems of global and local optimization, we propose a stopping-rule (SR) procedure for computing GMM estimators. The SR procedure eliminates the need for global search with high probability. And, it provides an explicit SR for problems of stability that may arise with local optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.