Abstract

AbstractBy extending the previously developed unified convection scheme (UNICON), we develop a stochastic UNICON with convective updraft plumes at the surface randomly sampled from the correlated multivariate Gaussian distribution for updraft vertical velocity w^ and thermodynamic scalars ϕ^, of which standard deviations and intervariable correlations are derived from the surface-layer similarity theory. The updraft plume radius R^ at the surface follows a power-law distribution with a specified scale break radius. To enhance computational efficiency, we also develop a hybrid stochastic UNICON consisting of n bin plumes and a single stochastic plume, each of which mainly controls the ensemble mean and variance of grid-mean convective tendency, respectively. We evaluated the stochastic UNICON using the large-eddy simulation (LES) of the Barbados Oceanographic and Meteorological Experiment (BOMEX) shallow convection case in a single-column mode. Consistent with the assumptions in the stochastic UNICON, the LES w^ and ϕ^ at the surface follow approximately the half- and full-Gaussian distributions, respectively. LES showed that a substantial portion of the variability in ϕ^ at the cloud base stems from the surface, which also supports the concept of stochastic UNICON that simulates various types of moist convection based on the dry stochastic convection launched from the surface. Overall, stochastic UNICON adequately reproduces the LES grid-mean thermodynamic states as well as the mean and variance of ϕ^, including their dependency on the domain size and R^. A sensitivity test showed that the perturbations of ϕ^ as well as R^ at the surface are important for the correct simulation of the grid-mean thermodynamic states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.