Abstract
Tabu search (TS) is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. It has achieved widespread successes in solving practical optimization problems. This paper proposes the stochastic TS strategy for discrete optimization and makes an investigation of its global convergence. The strategy considered introduces the Metropolis criterion and simulated annealing process into a general framework of TS. It has been proved that the strategy converges asymptotically to global optimal solutions, and satisfies the necessary and sufficient conditions for global asymptotic convergence. Furthermore, it produces a higher convergent rate than the simulated annealing algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.