Abstract
Superconducting nanowire devices, such as the superconducting nanowire single photon detector (SNSPD) or nanocryotron, have a time-dependent stochasticity that depends on the current flowing through them. When modeling complex circuits made of several such devices (for instance, an array of SNSPDs), the ability to include this randomness can be important for predicting unwanted effects and interactions within the circuit. We present a modification of the model described by Berggren et al. that allows for the inclusion of this stochasticity into the nanowire device model. We then verify the model against experiment using a tungsten silicide SNSPD, and show that the modified model replicates the stochasticity of the physical device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.