Abstract

We use rank one Gaussian perturbations to derive a smooth stochastic approximation of the maximum eigenvalue function. We then combine this smoothing result with an optimal smooth stochastic optimization algorithm to produce an efficient method for solving maximum eigenvalue minimization problems, and detail a variant of this stochastic algorithm with monotonic line search. Overall, compared to classical smooth algorithms, this method runs a larger number of significantly cheaper iterations and, in certain precision/dimension regimes, its total complexity is lower than that of deterministic smoothing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.