Abstract

Streamflow simulation gives the major information on water systems to water resources planning and management. The monthly river flows in dry season often exhibit high autocorrelation. The headwater catchment of the Yellow River basin monthly flow series in dry season exhibits this clearly. However, existing models usually fail to capture the high-dimensional, nonlinear dependence. To address this issue, a stochastic model is developed using canonical vine copulas in combination with nonlinear correlation coefficients. Kendall’s tau values of different pairs of river flows are calculated to measure the mutual correlations so as to select correlated streamflows for every month. Canonical vine copula is used to capture the temporal dependence of every month with its correlated streamflows. Finally, monthly river flow by the conditional joint distribution functions conditioned upon the corresponding river flow records was generated. The model was applied to the simulation of monthly river flows in dry season at Tangnaihai station, which controls the streamflow of headwater catchment of Yellow River basin in the north of China. The results of the proposed method possess a smaller mean absolute error (MAE) than the widely-used seasonal autoregressive integrated moving average model. The performance test on seasonal distribution further verifies the great capacity of the stochastic-statistical method.

Highlights

  • With the global population continuing to increase, water resources are becoming ever more vital by more demand for urbanization and agricultural intensification [1,2]

  • Dry season of river flow of Tangnaihai station are from November to June in which runoff is highly dependent on previous months

  • In spite of high lag 1 correlation between streamflows in wet season, we only focus on the application of high-dimensional canonical vine copulas to multivariate dependence among streamflows in dry season in this paper

Read more

Summary

Introduction

With the global population continuing to increase, water resources are becoming ever more vital by more demand for urbanization and agricultural intensification [1,2]. Streamflow simulation in dry season is a paramount process in water and drought management, determination of river water flow potentials, environmental flow analysis, agricultural practices, and hydro-power generation [3,4]. The most famous parametric models are autoregressive moving average models and autoregressive integrated moving average models proposed by Box and Jenkins [7]. They are established based on the linear regression method with auto-correlation function and partial autocorrelation function. The models and their variants are widely used for

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.