Abstract
In this paper, a stochastic self-scheduling of renewable energy sources (RESs) considering compressed air energy storage (CAES) in the presence of a demand response program (DRP) is proposed. RESs include wind turbine (WT) and photovoltaic (PV) system. Other energy sources are thermal units and CAES. The time-of-use (TOU) rate of DRP is considered in this paper. This DRP shifts the percentage of load from the expensive period to the cheap one in order to flatten the load curve and minimize the operation cost, consequently. The proposed objective function includes minimizing the operation costs of thermal unit and CAES, considering technical and physical constraints. The proposed model is formulated as mixed integer linear programming (MILP) and it is been solved using General Algebraic Modeling System (GAMS) optimization package. Furthermore, CAES and DRP are incorporated in the stochastic self-scheduling problem by a decision maker to reduce the expected operation cost. Meanwhile, the uncertainty models of market price, load, wind speed, temperature and irradiance are considered in the formulation. Finally, to assess the effects of DRP and CAES on self-scheduling problem, four case studies are utilized, and significant results were obtained, which indicate the validity of the proposed stochastic program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.