Abstract

In terminal airspace, integrating arrivals, departures, and surface operations with competing resources provides the potential of improving operational efficiency by removing barriers between different operations. This work develops a centralized stochastic scheduler for operations in a terminal area including airborne and surface operations using Non-dominated sorting genetic algorithm and Monte Carlo simulations. The scheduler handles completing resources between different flows, such as runway allocations, runway crossing, departure fixes, and other interaction way points between arrivals and departures. Meanwhile, the scheduler also takes time-varied uncertainties into account when optimizing schedules. The scheduler is run sequentially to identify the best and robust schedule for the next planning window. Resulting schedules decide the routes, speed or delays, and runway assignments with separation constraints at mergingdiverging waypoints in the air and crossing and separations on runways. The Los Angels terminal area was used as an example. The implementation of this stochastic scheduler for integrated arrival, departure and surface operations is completed. And several preliminary runs are finished for over 1,200 flights in LAX in a typical day. Sensitivity studies on various planning window sizes are presented, which shows that trade-off exits between planning window size and achievable minimum delay. Preliminary results on runway usage are also presented in this abstract. Because arrivals on the outer runways have to be followed by crossings on the inner runways, algorithmic runway allocation prefers inner runways for arrivals and outer runways for departures. More results will be presented in the final paper. And current terminal arrival and departure procedures based on first-come-first-serve procedure will also be set up and used as a baseline for comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.