Abstract
The evolution by horizontal mean curvature flow (HMCF) is a partial differential equation in a sub-Riemannian setting with applications in IT and neurogeometry [see Citti et al. (SIAM J Imag Sci 9(1):212–237, 2016)]. Unfortunately this equation is difficult to study, since the horizontal normal is not always well defined. To overcome this problem the Riemannian approximation was introduced. In this article we obtain a stochastic representation of the solution of the approximated Riemannian mean curvature using the Riemannian approximation and we will prove that it is a solution in the viscosity sense of the approximated mean curvature flow, generalizing the result of Dirr et al. (Commun Pure Appl Math 9(2):307–326, 2010).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Differential Equations and Applications NoDEA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.