Abstract
This paper proposes a stochastic programming model and solution algorithm for solving supply chain network design problems of a realistic scale. Existing approaches for these problems are either restricted to deterministic environments or can only address a modest number of scenarios for the uncertain problem parameters. Our solution methodology integrates a recently proposed sampling strategy, the sample average approximation (SAA) scheme, with an accelerated Benders decomposition algorithm to quickly compute high quality solutions to large-scale stochastic supply chain design problems with a huge (potentially infinite) number of scenarios. A computational study involving two real supply chain networks are presented to highlight the significance of the stochastic model as well as the efficiency of the proposed solution strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.