Abstract

AbstractWe study an open discrete-time queueing network. We assume data is generated at nodes of the network as a discrete-time Bernoulli process. All nodes in the network maintain a queue and relay data, which is to be finally collected by a designated sink. We prove that the resulting multidimensional Markov chain representing the queue size of nodes has two behavior regimes depending on the value of the rate of data generation. In particular, we show that there is a nontrivial critical value of the data rate below which the chain is ergodic and converges to a stationary distribution and above which it is non-ergodic, i.e., the queues at the nodes grow in an unbounded manner. We show that the rate of convergence to stationarity is geometric in the subcritical regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.