Abstract

This paper addresses the joint relay assignment and power allocation problem for orthogonal multiuser systems using amplify-and-forward (AF) relaying nodes in the downlink. Our aim is to maximize the sum-rate subject to individual and total power constraints on the relays and a relay assignment constraint. In the case of fixed relay selection, the power allocation optimization is convex and an efficient recursive algorithm is proposed to achieve the optimum. The joint optimization of relay selection and power allocation, however, appears to be non-convex and is not known to be tractable. To tackle this, we propose a novel algorithm using Markov chain Monte-Carlo with Kullback-Leibler divergence minimization (MCMC-KLDM), which is proved to converge to the global optimum almost surely. Results show that the proposed scheme significantly outperforms a greedy approach and achieves near-optimal performance at very low complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.