Abstract

In this paper, we first introduce a new spatial-temporal interaction operator to describe the space-time dependent phenomena. Then we consider the stochastic optimal control of a new system governed by a stochastic partial differential equation with the spatial-temporal interaction operator. To solve such a stochastic optimal control problem, we derive an adjoint backward stochastic partial differential equation with spatial-temporal dependence by defining a Hamiltonian functional, and give both the sufficient and necessary (Pontryagin-Bismut-Bensoussan type) maximum principles. Moreover, the existence and uniqueness of solutions are proved for the corresponding adjoint backward stochastic partial differential equations. Finally, our results are applied to study the population growth problems with the space-time dependent phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call