Abstract
ABSTRACT This study introduces a stochastic approach based on Convolutional Neural Networks (CNNs) for predicting mechanical Asphalt Concrete (AC) properties with dependency on the mixture composition, temperature and loading frequency. The underlying CNN metamodels were evaluated by a comprehensive database of AC properties with a total of 7400 dynamic modulus records. The CNN approach shows an improved accuracy compared to other state of the art machine learning approaches found in literature. Stochastic CNN based metamodels were developed to take into account the uncertainty of mechanical properties resulting from arbitrarily arranged aggregates and air voids in AC. The data used for the stochastic metamodels contain a total of 3645 dynamic modulus and phase angle values. They were obtained from microscale Finite Element (FE) simulations considering a heterogenous material composition and viscoelastic material behaviour of the AC binder. The developed stochastic CNN metamodels provide highly accurate predictions for the statistical characteristics such as mean values, standard deviations and empirical distribution functions of the dynamic modulus and the phase angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.