Abstract

Concrete fracture caused by corrosion of reinforcing bars may cause subsequent structure failure. To better predict this process, we introduce a partially-homogenized stochastic peridynamic model with the simplest constitutive relation (linear elastic with brittle failure). The model links microscale information (phase volume fractions of mortar, aggregates, interfaces) to macroscale fracture behavior, while costing the same as a fully homogenized model. We explain why a fully-homogenized peridynamic model fails to capture the correct concrete fracture modes/patterns, while the new model succeeds. The multiscale model predicts the evolution of fracture in reinforced concrete caused by corrosion products expansion in samples with a single or multiple rebars. Non-uniform expansion of corrosion products is enforced here as preset, incremental radial displacements. The computed fracture patterns and the order in which various cracks develop match what is seen in experiments. The model’s robustness is tested under different stochastic realizations and discretization grid types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call