Abstract

Thermal conductivity and thermal response are the essential indexes of C/SiC composites in the thermal protection systems (TPS). A stochastic multi-scale finite element model is put forth for predicting the above parameters based on the microstructure characteristics of the plain woven (2D) C/SiC-Ti3SiC2 composite. The reliability of the proposed stochastic multi-scale model is verified by the experimental data of thermal conductivity as well as the temperature history obtained from the continuous-wave laser irradiation experiment. The effects of porosity, the carbon fiber and the Ti3SiC2 MAX phase volume fractions on thermal conductivity and temperature field are analyzed. The results show that the porosity significantly reduces the thermal conductivity and elevates the temperature. The mesoscale thermal conductivity rises with the increase of the Ti3SiC2 MAX phase. Increasing the volume fraction of Ti3SiC2 can decreases the temperature at the laser irradiation center zone. The study provides an efficient tool in the design of the thermal response of MAX phase-modified ceramic matrix composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call