Abstract

 
 
 This paper introduces a stochastic modeling approach for a quantized system for the purpose of fault detection and isolation in an automotive alternator system. Three common alternator faults including belt slip, diode failure, and incorrect reference voltage for the voltage controller are considered and analyzed. A continuous nonlinear model of the alternator system is quantized into discrete states in order to simplify diagnostic efforts. The paper describes a stochastic modeling approach that creates a time-varying probability transition matrix that can be computed in real- time without the need for Monte Carlo simulation. Fault detection and isolation occurs through comparison of the most probable state from the transition matrix and the quantized output state.
 
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.