Abstract

We present a three-dimensional, stochastic model of thermal spray coating. It is capable of predicting coating porosity, thickness, roughness, and the variation of these properties with spray parameters. The model assigns impact properties to molten droplets landing on the substrate by generating random values of process parameters, assuming that these properties follow normal distributions with user-specified means and standard deviations. We prescribed rules to calculate splat sizes after droplet impact and their interaction with each other. Porosity is assumed to be solely due to the curl-up of the splats as a result of thermal stresses. We use a Cartesian grid to define the computational domain and to track the shape and position of the deposited coating. The surface of the coating and the location of pores within it are specified using a variable known as the “volume fraction,” defined as the fraction of the volume of a computational cell occupied by coating material. Results are given for the variation of coating porosity, thickness and roughness with varying particle speed, size, and spraying gun speed. Predicted trends agree with experimental observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call