Abstract

Reducing water use could impact existing sewer systems but this is not currently well understood. This work describes a new flow and wastewater quality model developed to investigate this impact. SIMDEUM WW® was used to generate stochastic appliance-specific discharge profiles for wastewater flow and concentration, which were fed into InfoWorks® ICM to quantify the impacts within the sewer network. The model was validated using measured field data from a sewer system in Amsterdam serving 418 households. Wastewater concentrations of total suspended solids (TSS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TPH) were sampled on an hourly basis, for one week. The results obtained showed that the InfoWorks® model predicted the mass flow of pollutants well (R-values 0.69, 0.72 and 0.75 for COD, TKN and TPH respectively) but, due to the current lack of a time-varying solids transport model within InfoWorks®, the prediction for wastewater concentration parameters was less reliable. Still, the model was deemed capable of analysing the effects of three water conservation strategies (greywater reuse, rainwater harvesting and water-saving appliances) on flow, nutrient concentrations, and temperature in sewer networks. Results show through a 62% reduction in sewer flow, COD, TKN and TPH concentrations increased by up to 111%, 84% and 75% respectively, offering more favourable conditions for nutrient recovery.

Highlights

  • Contemporary water cycle infrastructure has typically been developed to promote public health and safety by supplying wholesome drinking water and by transporting wastewater and stormwater out of urban areas as quickly as possible

  • This is due to a combination of time in flow and hold up time of water used in household appliances before discharge

  • The water balance between drinking water and wastewater data in Prinseneiland revealed an average excess of 1.3 m3 day−1 in the wastewater

Read more

Summary

Introduction

Contemporary water cycle infrastructure has typically been developed to promote public health and safety by supplying wholesome drinking water and by transporting wastewater and stormwater out of urban areas as quickly as possible. This has led to linear water use (take, use, throwaway) that. Limiting wastewater dilution can be achieved by reducing domestic drinking water use, separation of storm/wastewater systems and preventing groundwater inflow by repairing/replacing broken pipes. This reduces nutrient loss from the cycle whilst reduced drinking water demand and wastewater transportation volume could save cost by reducing demands on existing infrastructure. The integrated model will predict flow and wastewater quality changes in both drinking water and wastewater infrastructures, to evaluate the consequences of future water use scenarios

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.