Abstract

A large-scale earthquake is believed to be associated with a release of strain energy accumulated in the crust, probably by the motion of upper-mantle lithosphere. Such an earthquake mechanism is well simulated by a belt-conveyer model proposed by Utsu (1972). The probability of earthquake occurrence can be estimated on the assumption that the motion of a slider on the belt-conveyer is mathematically formulated as a Markov process.In the probabilistic expressions, the results of Mogi's (1962) rock-fracture experiments are applied to the hazard-rate function of earthquake occurrence. The hazard-rate function has two coefficients, A and B, to be determined by the experiments. It is concluded that, when B is small, a number of small-scale earthquakes occur in the early time after the accumulation of crustal strain energy starts, but that the accumulated strain energy changes catastrophically into a single large-scale earthquake, when B is large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.