Abstract

This work proposes a stochastic model to characterize the transmission control protocol (TCP) over optical burst switching (OBS) networks which helps to understand the interaction between the congestion control mechanism of TCP and the characteristic bursty losses in the OBS network. We derive the steady-state throughput of a TCP NewReno source by modeling it as a Markov chain and the OBS network as an open queueing network with rejection blocking. We model all the phases in the evolution of TCP congestion window and evaluate the number of packets sent and time spent in different states of TCP. We model the mixed assembly process, burst assembler and disassembler modules, and the core network using queueing theory and compute the burst loss probability and end-to-end delay in the network. We derive expression for the throughput of a TCP source by solving the models developed for the source and the network with a set of fixed-point equations. To evaluate the impact of a burst loss on each TCP flow accurately, we define the burst as a composition of per-flow-bursts (which is a burst of packets from a single source). Analytical and simulation results validate the model and highlight the importance of accounting for individual phases in the evolution of TCP congestion window.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.