Abstract

We propose a simple stochastic model based on the two successive mutations hypothesis to compute cancer risks. Assume that only stem cells are susceptible to the first mutation and that there are a total of D stem cell divisions over the lifetime of the tissue with a first mutation probability mu(1) per division. Our model predicts that cancer risk will be low if m = mu(1)D is low even in the case of very advantageous mutations. Moreover, if mu(1)D is low the mutation probability of the second mutation is practically irrelevant to the cancer risk. These results are in contrast with existing models but in agreement with a conjecture of Cairns. In the case where m is large our model predicts that the cancer risk depends crucially on whether the first mutation is advantageous or not. A disadvantageous or neutral mutation makes the risk of cancer drop dramatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.