Abstract

New technologies, such as electric vehicles, rooftop solar, and behind-the-meter storage, will lead to increased variation in electrical load, and the location and time of the penetration of these technologies are uncertain. Power quality, reliability, and protection issues can be the result if electric utilities do not consider the probability of load scenarios that have not yet occurred. The authors’ approach to addressing these concerns started with collecting the electrical load data for an expansive and diverse set of distribution transformers. This provided approximately two-and-a-half years of data that were used to develop new methods that will enable engineers to address emerging issues. The efficacy of the methods was then assessed with a real-world test dataset that was not used in the development of the new methods. This resulted in an approach to efficiently generate stochastic electrical load forecasts for elements of distribution circuits. Methods are also described that use those forecasts for engineering analysis that predict the likelihood of distribution transformer failures and power quality events. 100% of the transformers identified as most likely to fail either did fail or identified a data correction opportunity. The accuracy of the power quality results was 92% while allowing for a balance between measures of efficiency and customer satisfaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call