Abstract

The LATIN method has been developed and successfully applied to a variety of deterministic problems, but few work has been developed for nonlinear stochastic problems. This paper presents a stochastic LATIN method to solve stochastic and/or parameterized elastoplastic problems. To this end, the stochastic solution is decoupled into spatial, temporal and stochastic spaces, and approximated by the sum of a set of products of triplets of spatial functions, temporal functions and random variables. Each triplet is then calculated in a greedy way using a stochastic LATIN iteration. The high efficiency of the proposed method relies on two aspects: The nonlinearity is efficiently handled by inheriting advantages of the classical LATIN method, and the randomness and/or parameters are effectively treated by a sample-based approximation of stochastic spaces. Further, the proposed method is not sensitive to the stochastic and/or parametric dimensions of inputs due to the sample description of stochastic spaces. It can thus be applied to high-dimensional stochastic and parameterized problems. Five numerical examples demonstrate the promising performance of the proposed stochastic LATIN method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.