Abstract

AbstractIn this paper we derive a probabilistic representation of the deterministic three‐dimensional Navier‐Stokes equations based on stochastic Lagrangian paths. The particle trajectories obey SDEs driven by a uniform Wiener process; the inviscid Weber formula for the Euler equations of ideal fluids is used to recover the velocity field. This method admits a self‐contained proof of local existence for the nonlinear stochastic system and can be extended to formulate stochastic representations of related hydrodynamic‐type equations, including viscous Burgers equations and Lagrangian‐averaged Navier‐Stokes alpha models. © 2007 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.