Abstract

A rigorous derivation of quantum Langevin equation from microscopic dynamics in the low density limit is given. We consider a quantum model of a microscopic system (test particle) coupled with a reservoir (gas of light Bose particles) via interaction of scattering type. We formulate a mathematical procedure (the so-called stochastic golden rule) which allows us to determine the quantum Langevin equation in the limit of large time and small density of particles of the reservoir. The quantum Langevin equation describes not only dynamics of the system but also the reservoir. We show that the generator of the corresponding master equation has the Lindblad form of most general generators of completely positive semigroups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call