Abstract

Inter-cell interference coordination (ICIC) and intra-cell diversity (ICD) play important roles in improving cellular downlink coverage. By modeling cellular base stations (BSs) as a homogeneous Poisson point process (PPP), this paper provides explicit finite-integral expressions for the coverage probability with ICIC and ICD, taking into account the temporal/spectral correlation of the signal and interference. In addition, we show that, in the high-reliability regime, where the user outage probability goes to zero, ICIC and ICD affect the network coverage in drastically different ways: ICD can provide order gain, whereas ICIC only offers linear gain. In the high-spectral efficiency regime where the SIR threshold goes to infinity, the order difference in the coverage probability does not exist; however, a linear difference makes ICIC a better scheme than ICD for realistic path loss exponents. Consequently, depending on the SIR requirements, different combinations of ICIC and ICD optimize the coverage probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.