Abstract

Device-to-device (D2D) communications are now considered an integral part of future 5G networks, which will enable direct communication between user equipments and achieve higher throughputs than conventional cellular networks, but with the increased potential for co-channel interference. The physical channels, which constitute D2D communications, can be expected to be complex in nature, experiencing both line-of-sight (LOS) and non-LOS conditions across closely located D2D pairs. In addition to this, given the diverse range of operating environments, they may also be subject to clustering of the scattered multipath contribution, i.e. , propagation characteristics which are quite dissimilar to conventional Rayleigh fading environments. To address these challenges, we consider two recently proposed generalized fading models, namely $\kappa$ - $\mu$ and $\eta$ - $\mu$ , to characterize the fading behavior in D2D communications. Together, these models encompass many of the most widely utilized fading models in the literature such as Rayleigh, Rice (Nakagami- $n$ ), Nakagami- $m$ , Hoyt (Nakagami- $q$ ), and One-sided Gaussian. Using stochastic geometry, we evaluate the spectral efficiency and outage probability of D2D networks under generalized fading conditions and present new insights into the tradeoffs between the reliability, rate, and mode selection. Through numerical evaluations, we also investigate the performance gains of D2D networks and demonstrate their superiority over traditional cellular networks.

Highlights

  • We have considered a D2D network overlaid on an uplink cellular network, where the locations of the mobile user equipments (UEs) as well as the BSs are modeled as PPP

  • We exploited a novel stochastic geometric approach for evaluating the D2D network performance under the assumption of generalized fading conditions described by the κ-μ and η-μ fading models

  • We evaluated the spectral efficiency and outage probability of the overlaid D2D network

Read more

Summary

A Stochastic Geometric Analysis of Device-to-Device Communications Operating

Young Jin Chun, Member, IEEE, Simon L. Given the diverse range of operating environments, they may be subject to clustering of the scattered multipath contribution, i.e., propagation characteristics which are quite dissimilar to conventional Rayleigh fading environments. To address these challenges, we consider two recently proposed generalized fading models, namely κ-μ and η-μ, to characterize the fading behavior in D2D communications. Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org

Related Works
Motivation and Contributions
Network Model
Mode Selection and UE Classification
Channel Inversion-Based Power Control
E Pcl l δ
THE κ -μ AND η-μ FADING MODELS
INTERFERENCE MODEL OF THE OVERLAY D2D NETWORK
D2D Mode
Cellular Mode
STOCHASTIC GEOMETRIC FRAMEWORK FOR SYSTEM PERFORMANCE EVALUATION
Spectral Efficiency
Outage Probability
NUMERICAL RESULTS
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call