Abstract

Heckman s (1979) sample selection model has been employed in three decades of applications of linear regression studies. The formal extension of the method to nonlinear models, however, is of more recentvintage. A generic solution for nonlinear models is proposed in Terza (1998). We have developed simulation based approach in Greene (2006). This paper builds on this framework to obtain a sample selection correction for the stochastic frontier model. We first show a surprisingly simple way to estimate the familiar normal-half normal stochastic frontier model (which has a closed form log likelihood) using maximum simulated likelihood. The next step is to extend the technique to a stochastic frontier modelwith sample selection. Here, the log likelihood does not exist in closed form, and has not previously been analyzed. We develop a simulation based estimation method for the stochastic frontier model. In an application that seems superficially obvious, the method is used to revisit the World Health Organization data [WHO (2000), Tandon et al. (2000)] where the sample partitioning is based on OECD membership. The original study pooled all 191 countries. The OECD members appear to be discretely different from therest of the sample. We examine the difference in a sample selection framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.