Abstract

In this paper, a model generation algorithm for non-equal diameter particles with a specified probability density distribution is proposed. Based on considering the randomness of the size and distribution of the particles, the compact stacking of the particles is realized by the compactness algorithm, and then the spatial distribution of the tightly compacted particles is made to meet the random distribution of the specified probability density and the specified volume fraction by the filtering algorithm. The computational efficiency and effectiveness of the algorithm are verified, and the effects of the particle size and volume fraction on the distribution are analyzed. Finally, the proposed model has been used to study the permeability of a titanium porous filter cartridge. The results show that the size and location of the particle samples that are generated by the proposed algorithm follow specified probability distributions according to the requirements, and the volume fraction can be adjusted. Compared with the traditional algorithm, the computational effort and complexity are reduced. The resultant model can be used to study the permeability of porous materials and provide modeling support for structural optimization and further simulation of porous materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.