Abstract
In power system communication and control, the wide-area measurement system (WAMS) is usually adversely affected by noisy measurements and data congestion, posing great challenges to the stability and functionality of modern power grids. This study proposes a stochastic event-triggered robust dynamic state estimation (DSE) method for non-Gaussian measurement noises, using the cubature Kalman filter (CKF) technique. To reduce the computational burden and data transmission congestion resulting from centrally processing the measurement data, the proposed event-triggered robust CKF (ET-RCKF) is deployed at a local level with appropriate system formulation. The proposition of the novel robust DSE strategy is detailed in this brief, with its stability mathematically analyzed and proven, and simulation study on the IEEE 39-bus benchmark test system verifies the effectiveness of the proposed ET-RCKF approach. This novel DSE method is able to cope with non-Gaussian measurement noises and produce highly satisfactory estimation results, leading to wide applicability in real-world power system applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.