Abstract

In this paper, a stochastic SIS epidemic model on homogeneous networks is considered. The largest Lyapunov exponent is calculated by Oseledec multiplicative ergodic theory, and the stability condition is determined by the largest Lyapunov exponent. The probability density function for the proportion of infected individuals is found explicitly, and the stochastic bifurcation is analysed by a probability density function. In particular, the new basic reproductive number R*, that governs whether an epidemic with few initial infections can become an endemic or not, is determined by noise intensity. In the homogeneous networks, despite of the basic productive number R0 > 1, the epidemic will die out as long as noise intensity satisfies a certain condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.