Abstract

A stochastic discrete fractional Cournot duopoly game model with a unique interior Nash equilibrium is developed in this study. Some sufficient criteria of the Lyapunov stability in probability for the proposed model at the interior Nash equilibrium are derived using the Lyapunov theory. The proposed model’s finite time stability in probability is then investigated using a nonlinear feedback control approach at the interior Nash equilibrium. The stochastic Bellman theory is also used to explore the locally optimum control problem. Furthermore, bifurcation diagrams, time series, and the 0-1 test are used to investigate the chaotic dynamics of this model. Finally, numerical examples are given to illustrate the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.