Abstract
In this paper, a mixed-integer linear programming model is discussed to provide joint decision making for facility location and production–distribution across countries for both forward and reverse logistics. A hybrid facility network is considered for cost-cutting and equipment sharing where the facilities of forward logistics are also equipped to provide reverse logistics services. The model considers the dynamic production and storage capacity of the facilities which can be expanded if required. Furthermore, the effectiveness of the model is tested to deal with disruptions due to man-made or natural disasters. The dynamic facility allocation enables the model to withstand the demand/supply disruptions in a disaster-affected zone. Besides this, the model considers carbon emissions caused due to manufacturing, remanufacturing, repair, storage and transportation. These emissions are regulated using cap and trade policy Thus, the proposed model balances resilience and sustainability under uncertain market demand and product returns. The chance-constrained approach is used to obtain the deterministic equivalence of the stochastic demand and returns. The paper also investigates the changes in emission and production level in each country under demand and supply disruptions. The parameters of the model are mapped with the various dimensions of big data such as volume, velocity and variety. The proposed model is solved using randomly generated data sets having realistic parameters with essential big data characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.