Abstract

This paper presents a stochastic differential equation for exposure based on a modified version of the standard dilution ventilation equation. An equilibrium solution is obtained with the assumption that variability in the rate of change of concentration is proportional to the product of concentration and one minus concentration. Appropriate definitions for concentration are used to ensure a physically consistent model. The probability distribution for exposure that results is the standard beta distribution. This model is supported by several exposure data sets, which fit the beta distribution well. Issues regarding parameter estimation for the beta distribution, and application of the model are presented. Recommendations are made for simultaneously collecting contaminant generation rate information, ventilation rates, and time-dependent breathing-zone tracer concentrations, in addition to the exposure data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.