Abstract

ABSTRACT For a given stochastic process X, its segment X t at time t, represents the “slice” of each path of X over a fixed time-interval [t − r, t], where r is the length of the “memory” of the process. Segment processes are important in the study of stochastic systems with memory (stochastic functional differential equations or SFDEs). The main objective of this paper is to study nonlinear transforms of segment processes. Toward this end, we construct a stochastic integral with respect to the Brownian segment process. The difficulty in this construction is the fact that the stochastic integrator is infinite dimensional and is not a (semi)martingale. We overcome this difficulty by employing Malliavin (anticipating) calculus techniques. The segment integral is interpreted as a Skorohod integral via a stochastic Fubini theorem. We then prove Itô's formula for the segment of a continuous Skorohod-type process and embed the segment calculus in the theory of anticipating calculus. Applications of the Itô formula include the weak infinitesimal generator for the solution segment of a stochastic system with memory, the associated Feynman-Kac formula, and the Black-Scholes PDE for stock dynamics with memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.