Abstract

This paper applies stochastic theory to the design and implementation of field-oriented control of an induction motor drive using a single field-programmable gate array (FPGA) device and integrated neural network (NN) algorithms. Normally, NNs are characterized as heavily parallel calculation algorithms that employ enormous computational resources and are less useful for economical digital hardware implementations. A stochastic NN structure is proposed in this paper for an FPGA implementation of a feedforward NN to estimate the feedback signals in an induction motor drive. The stochastic arithmetic simplifies the computational elements of the NN and significantly reduces the number of logic gates required for the proposed NN estimator. A new stochastic proportional-integral speed controller is also developed with antiwindup functionality. Compared with conventional digital controls for motor drives, the proposed stochastic-based algorithm enhances the arithmetic operations of the FPGA, saves digital resources, and permits the NN algorithms and classical control algorithms to be easily interfaced and implemented on a single low-complexity, inexpensive FPGA. The algorithm has been realized using a single FPGA XC3S400 from Xilinx, Inc. A hardware-in-the-loop (HIL) test platform using a Real Time Digital Simulator is built in the laboratory. The HIL experimental results are provided to verify the proposed FPGA controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.