Abstract

A new stochastic averaging method for predicting the response of vibro-impact (VI) systems to random perturbations is proposed. First, the free VI system (without damping and random perturbation) is analyzed. The impact condition for the displacement is transformed to that for the system energy. Thus, the motion of the free VI systems is divided into periodic motion without impact and quasi-periodic motion with impact according to the level of system energy. The energy loss during each impact is found to be related to the restitution factor and the energy level before impact. Under the assumption of lightly damping and weakly random perturbation, the system energy is a slowly varying process and an averaged Itô stochastic differential equation for system energy can be derived. The drift and diffusion coefficients of the averaged Itô equation for system energy without impact are the functions of the damping and the random excitations, and those for system energy with impact are the functions of the damping, the random excitations and the impact energy loss. Finally, the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equation is derived and solved to yield the stationary probability density of system energy. Numerical results for a nonlinear VI oscillator are obtained to illustrate the proposed stochastic averaging method. Monte-Carlo simulation (MCS) is also conducted to show that the proposed stochastic averaging method is quite effective. • A new stochastic averaging method was proposed. • The impact condition for displacement is transformed to that for system energy. • A direct way to deal with the energy loss due to impact is proposed. • The analytical results agree well with the MCS results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call