Abstract

We present a gradient-based algorithm for solving a class of simulation optimization problems in which the objective function is the quantile of a simulation output random variable. In contrast with existing quantile (quantile derivative) estimation techniques, which aim to eliminate the estimator bias by gradually increasing the simulation sample size, our algorithm incorporates a novel recursive procedure that only requires a single simulation sample at each step to simultaneously obtain quantile and quantile derivative estimators that are asymptotically unbiased. We show that these estimators, when coupled with the standard gradient descent method, lead to a multi-time-scale stochastic approximation type of algorithm that converges to an optimal quantile value with probability one. In our numerical experiments, the proposed algorithm is applied to optimal investment portfolio problems, resulting in new solutions that complement those obtained under the classical Markowitz mean-variance framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.