Abstract

Recently, a dynamic adaptive queue management with random dropping (AQMRD) scheme has been developed to capture the time-dependent variation of average queue size by incorporating the rate of change of average queue size as a parameter. A major issue with AQMRD is the choice of parameters. In this paper, a novel online stochastic approximation based optimization scheme is proposed to dynamically tune the parameters of AQMRD and which is also applicable for other active queue management (AQM) algorithms. Our optimization scheme significantly improves the throughput, average queue size, and loss-rate in relation to other AQM schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.