Abstract

This article constructs a stochastic model for the response of stay cables of cable-stayed bridges to the combined effect of wind and rain. It describes a spring-mounted section model of a stay cable in a steady wind where aerodynamic forces are modified by the dynamics of a mobile liquid rivulet. The motion of the rivulet is described by a simple stochastic process that, together with aerodynamic forces, models the complex fluid–structure interaction. Based on measured data for drag and lift coefficients and a static rivulet location, an analysis of the model suggests a new stochastic excitation mechanism for the rain–wind induced vibrations of stay cables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.