Abstract

Selective activation of prodrugs is an important approach to reduce the side effects of disease treatment. We report a prodrug design concept for metal complexes, termed "metal-carrying prochelator", which can co-carry a metal ion and chelator within a single small-molecule compound and remain inert until it undergoes a specifically triggered intramolecular chelation to synthesize a bioactive metal complex in situ for targeted therapy. As a proof-of-concept, we designed a H2 O2 -responsive small-molecule prochelator, DPBD, based on the strong chelator diethyldithiocarbamate (DTC) and copper. DPBD can carry Cu2+ (DPBD-Cu) and respond to elevated H2 O2 levels in tumor cells by releasing DTC, which rapidly chelates Cu2+ from DPBD-Cu affording a DTC-copper complex with high cytotoxicity, realizing potent antitumor efficacy with low systemic toxicity. Thus, with its unique intramolecularly triggered activation mechanism, this concept based on a small-molecule metal-carrying prochelator can help in the prodrug design of metal complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.