Abstract

The depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) entry (CCE), which is a Ca(2+)-selective and La(3+)-sensitive entry pathway. Here, we report a novel mechanism of La(3+)-resistant Ca(2+) entry that is synergistically regulated by B-cell-receptor (BCR) stimulation and Ca(2+) store depletion. In DT40 cells, stimulation of BCRs with anti-IgM antibodies induced Ca(2+) release and subsequent Ca(2+) entry in the presence of 0.3 microM La(3+), a condition in which CCE is completely blocked. This phenomenon was not observed in inositol 1,4,5-trisphosphate receptor-deficient DT40 (IP3R-KO) cells. However, in response to thapsigargin pretreatment, BCR stimulation induced La(3+)-resistant Ca(2+) entry into both wild-type and IP3R-KO cells. These results indicate that BCR stimulation alone does not activate Ca(2+) entry, whereas BCR stimulation and depleted Ca(2+) stores (either due to IP3R-mediated Ca(2+) release or Ca(2+) uptake inhibition) work in concert to activate La(3+)-resistant Ca(2+) entry. This Ca(2+) entry was inhibited by genistein. In addition, BCR-mediated Ca(2+) entry was completely abolished in Stim1-deficient DT40 cells and was restored by overexpression of YFP-Stim1, but was unaffected by double knockdown of Orai1 and Orai2. These results demonstrate a unique non-CCE pathway, in which Ca(2+) entry depends on Stim1- and BCR-mediated activation of tyrosine kinases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call