Abstract

A common goal when using Finite Element (FE) modeling in time domain wave scattering problems is to minimise model size by only considering a region immediately surrounding a defect or feature of interest. The model boundaries must simulate infinite space by minimising the reflection of incident waves. This is a significant and long-standing challenge that has only been achieved with partial success. Industrial companies wishing to perform such modeling are keen to use established commercial FE packages that offer a thorough history of validation and testing. Unfortunately, this limits the flexibility available to modelers preventing the use of popular research tools such as Perfectly Matched Layers (PML). Unlike PML, Absorbing Layers by Increasing Damping (ALID) have proven successful in this context, offering practical implementation into any solver that has representation of material damping. Despite good performance further improvements are desirable. Here, a Stiffness Reduction Method (SRM) has been developed that operates within a significantly reduced spatial domain. The technique is applied by altering damping and stiffness matrices, inducing decay of incident waves. Variables are expressed as a function of known model constants, easing implementation for generic problems. Analytical and numerical solutions have shown that SRM out performs ALID, with results approaching those of PML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.