Abstract
The present study develops a stiffness reduction—based model to characterize fatigue damage in unidirectional 0˚ and θ° plies and (0/θ) laminates of fiber-reinforced polymer (FRP) composites. The proposed damage model was constructed based on (i) cracking mechanism and damage progress in matrix (Region I), matrix-fiber interface (Region II) and fiber (Region III) and (ii) corresponding stiffness reduction of unidirectional composite laminates as the number of cycles progresses. The proposed model enabled damage assessment of FRP (0/θ) composite laminates by integrating the fatigue damage values of 0˚ and θ° plies. A weighting factor η was introduced to partition the efficiency of load carrying plies of 0° and θ° in the (0/θ) composite lamina. The fatigue damage curves of unidirectional FRP composite samples with off-axis angles of 0˚, 30˚, 45˚, and 90˚ and composite laminate systems of (0˚/30˚), (0˚/45˚) and (0˚/90˚) predicted based on the proposed damage model were found in good agreement with experimental data reported at various cyclic stress levels and stress ratios in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.