Abstract

Modeling of the soft-solid frictional interactions plays an important role in many robotic and mechatronic systems design. We present a new model that characterizes the two-dimensional (2D) soft-solid contact interactions. The new computational approach integrates the LuGre dynamic friction model with the beam network structure of the soft-solid contact. The LuGre dynamic friction model uses the bristle deformation to capture the friction characteristics and dynamics, while the beam network structure represents the elastic contact interactions. We also present a model simplification to facilitate analysis of model properties. The model prediction and validation results are demonstrated with the experiments. The experimental results confirm the effectiveness of the modeling development. We further use the model to compute the influence of the normal load and sliding velocity on the stick-slip interaction patterns and properties. These results explain and provide analytical foundation for the reported experiments in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call