Abstract

The combination of an electrophilic metal center with a redox active ligand set has the potential to provide reactivity unique from transition metal redox chemistry. In this report, substituted iminopyridine complexes containing monoanionic and dianionic (Me)IP(Mes) ligands have been characterized structurally and electronically. Green ((Me)IP(Mes)(-))AlCl(2) (1), ((Me)IP(Mes)(-))AlMe(2) (2), and ((Me)IP(Mes)(-))GaCl(2) (5) have a doublet spin state which results from the anion radical form of (Me)IP(Mes). Purple ((Me)IP(Mes)(2-))AlCl(OEt(2)) (3), ((Me)IP(Mes)(2-))AlMe(OEt(2)) (4), and ((Me)IP(Mes)(2-))GaCl(OEt(2)) (6) are each diamagnetic. We have also investigated the solvent dependence of the decomposition of the (Me)IP(Mes) anion radical. Complexes 1 and 2 can be obtained from benzene and hexanes whereas the use of ether solvents results in the formation of undesirable ((CH2)IP(Mes)(-))AlCl(2) (1a) and ((CH2)IP(Mes)(-))AlCl(2) (2a) formed by loss of a hydrogen atom from the (Me)IP(Mes)(-) ligand. Electrochemical measurements indicate that 1, 2, and 5 are redox active.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.