Abstract

With the rapid development of China's urbanization and industrialization, the increasing emissions of industrial waste gas (IWG) have resulted in severe air pollution, which has posed a great threat to human health and sustainable development. In this study, a stepwise clustered industrial waste gas emission management model (SCEM) is developed to support the formulation of IWG-mitigation policies with consideration of sector-level production- and emission-oriented input-output relationships. A special case study for the Municipality of Chongqing, China, is conducted to analyze non-functional relationships which exist between the emissions of multiple IWGs and the related multi-dimensional impact factors through the proposed model. It was found that the total emissions of sulfur dioxide (SO2) were larger than total ones of Fume and Dust (FD), while productions of SO2 were fewer than the total FD productions, indicating that the government paid more attention to the handling process of FD than that of SO2. In the Municipality of Chongqing, the indirect IWG emissions induced by urban household are far more than the ones resulted from rural household. For instance, the indirect IWG emissions of all sectors from urban household (i.e., 505.50 billion m3) are about seven times the ones from rural household (i.e., 72.31 billion m3) during 2002–2017. It is thus recommended that the emission mitigation should pay more attention on the urban household than rural household in Chongqing City. In addition, the mitigation policy scenarios aimed at specific IWG types and sector, which were produced based on the developed SCEM, show the best performances in terms of emission mitigations, demonstrating the applicability and superiority of the developed model in supporting policy development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call