Abstract

We present a unified mathematical framework for analyzing the tradeoffs between parallelism and storage allocation within a parallelizing compiler. Using this framework, we show how to find a good storage mapping for a given schedule, a good schedule for a given storage mapping, and a good storage mapping that is valid for all legal (one-dimensional affine) schedules. We consider storage mappings that collapse one dimension of a multidimensional array, and programs that are in a single assignment form and accept a one-dimensional affine schedule. Our method combines affine scheduling techniques with occupancy vector analysis and incorporates general affine dependences across statements and loop nests. We formulate the constraints imposed by the data dependences and storage mappings as a set of linear inequalities, and apply numerical programming techniques to solve for the shortest occupancy vector. We consider our method to be a first step towards automating a procedure that finds the optimal tradeoff between parallelism and storage space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.